707. Design Linked List
Learn how to implement a custom linked list data structure in Python, covering both singly and doubly linked list variations. Master essential operations like insertion, deletion, and traversal with practical examples and optimal solutions for coding interviews.
LeetCode Link: 707. Design Linked List
Problem Definition
Design your implementation of the linked list. You can choose to use a singly or doubly linked list.
A node in a singly linked list should have two attributes: val
and next
. val
is the value of the current node, and next
is a pointer/reference to the next node.
If you want to use the doubly linked list, you will need one more attribute prev
to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.
Implement the MyLinkedList
class:
MyLinkedList()
Initializes theMyLinkedList
object.int get(int index)
Get the value of theindexth
node in the linked list. If the index is invalid, return-1
.void addAtHead(int val)
Add a node of valueval
before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.void addAtTail(int val)
Append a node of valueval
as the last element of the linked list.void addAtIndex(int index, int val)
Add a node of valueval
before theindexth
node in the linked list. Ifindex
equals the length of the linked list, the node will be appended to the end of the linked list. Ifindex
is greater than the length, the node will not be inserted.void deleteAtIndex(int index)
Delete theindexth
node in the linked list, if the index is valid.
Example
Input:
["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"]
[[], [1], [3], [1, 2], [1], [1], [1]]
Output:
[null, null, null, null, 2, null, 3]
Explanation:
MyLinkedList myLinkedList = new MyLinkedList();
myLinkedList.addAtHead(1);
myLinkedList.addAtTail(3);
myLinkedList.addAtIndex(1, 2); // linked list becomes 1->2->3
myLinkedList.get(1); // return 2
myLinkedList.deleteAtIndex(1); // now the linked list is 1->3
myLinkedList.get(1); // return 3
Constraints:
0 <= index, val <= 1000
- Please do not use the built-in LinkedList library.
- At most
2000
calls will be made toget
,addAtHead
,addAtTail
,addAtIndex
anddeleteAtIndex
.
Thought Process
If you are not very familiar with the basics of linked lists, you can read this article:
If you're not clear about the dummy head node of a linked list, you can read this article:
Delete linked list node:
Add linked list node:
This problem designs five interfaces for a linked list:
- Get the value of the node at index in the linked list
- Insert a node at the front of the linked list
- Insert a node at the end of the linked list
- Insert a node before the node at index in the linked list
- Delete the node at index in the linked list
These five interfaces cover common operations on a linked list and make it an excellent exercise for practicing linked list operations.
There are two ways to perform operations on a linked list:
- Directly use and operate on the original linked list.
- Set up a dummy head node for performing operations.
Solution 1 - Dummy Head Node
The following approach uses setting up a dummy head node (this makes it more convenient, as you will see from looking at the code).
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
class MyLinkedList:
def __init__(self):
self.dummy_head = ListNode()
self.size = 0
def get(self, index: int) -> int:
if index < 0 or index >= self.size:
return -1
current = self.dummy_head.next
for i in range(index):
current = current.next
return current.val
def addAtHead(self, val: int) -> None:
self.dummy_head.next = ListNode(val, self.dummy_head.next)
self.size += 1
def addAtTail(self, val: int) -> None:
current = self.dummy_head
while current.next:
current = current.next
current.next = ListNode(val)
self.size += 1
def addAtIndex(self, index: int, val: int) -> None:
if index < 0 or index > self.size:
return
current = self.dummy_head
for i in range(index):
current = current.next
current.next = ListNode(val, current.next)
self.size += 1
def deleteAtIndex(self, index: int) -> None:
if index < 0 or index >= self.size:
return
current = self.dummy_head
for i in range(index):
current = current.next
current.next = current.next.next
self.size -= 1
Time complexity: Operations involving index are O(index), others are O(1)
Space complexity: O(n)
Solution 2 - Double Linked List
This code implements a doubly linked list through the MyLinkedList
class, where each ListNode
has pointers to both the previous node and the next node.
class ListNode:
def __init__(self, val=0, prev=None, next=None):
self.val = val
self.prev = prev
self.next = next
class MyLinkedList:
def __init__(self):
self.head = None
self.tail = None
self.size = 0
def get(self, index: int) -> int:
if index < 0 or index >= self.size:
return -1
if index < self.size // 2:
current = self.head
for i in range(index):
current = current.next
else:
current = self.tail
for i in range(self.size - index - 1):
current = current.prev
return current.val
def addAtHead(self, val: int) -> None:
new_node = ListNode(val, None, self.head)
if self.head:
self.head.prev = new_node
else:
self.tail = new_node
self.head = new_node
self.size += 1
def addAtTail(self, val: int) -> None:
new_node = ListNode(val, self.tail, None)
if self.tail:
self.tail.next = new_node
else:
self.head = new_node
self.tail = new_node
self.size += 1
def addAtIndex(self, index: int, val: int) -> None:
if index < 0 or index > self.size:
return
if index == 0:
self.addAtHead(val)
elif index == self.size:
self.addAtTail(val)
else:
if index < self.size // 2:
current = self.head
for i in range(index - 1):
current = current.next
else:
current = self.tail
for i in range(self.size - index):
current = current.prev
new_node = ListNode(val, current, current.next)
current.next.prev = new_node
current.next = new_node
self.size += 1
def deleteAtIndex(self, index: int) -> None:
if index < 0 or index >= self.size:
return
if index == 0:
self.head = self.head.next
if self.head:
self.head.prev = None
else:
self.tail = None
elif index == self.size - 1:
self.tail = self.tail.prev
if self.tail:
self.tail.next = None
else:
self.head = None
else:
if index < self.size // 2:
current = self.head
for i in range(index):
current = current.next
else:
current = self.tail
for i in range(self.size - index - 1):
current = current.prev
current.prev.next = current.next
current.next.prev = current.prev
self.size -= 1
This is a doubly linked list implementation, which allows:
- Efficient bidirectional traversal.
- Faster insertions and deletions at both ends compared to singly linked lists.
Optimizations:
The get
and addAtIndex
methods optimize traversal by starting from either the head or tail depending on the index, reducing the traversal time on average.
Time complexity: Operations involving index are O(index), others are O(1)
Space complexity: O(n)
Discussion